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ABSTRACT 

This paper applies a Markov chain approach to forecasting cotton yield from 
pre-harvest crop data gathered in a large-scale USDA yield survey. 
Transition matrices for crop condition classes between successive sampling 
dates were estimated from three years (1981-1983) of baseline data. The 
estimated average cotton yields for California and for Texas were forecasted 
for each pre-harvest sampling date in 1984. The forecasting errors were very 
encouraging for 1984, and a resampling study of the previous ),ears confirms 
the relatively small forecast error of  this procedure. The procedure should be 
easy to adapt for similar applications, therefore, the Markov chain approach 
is recommended as a new, useful procedure for crop forecasting from 
operational survey data. 

I N T R O D U C T I O N  

A Markov  chain approach for forecasting crop yield was presented by Matis 
et al. (1985). In this approach, a transition probabili ty matrix was estimated 
from historical data. The matrix was used to provide forecasted 
distributions of  final crop yield at selected times prior to harvest for various 
plant and environmental condit ion classes. Expected yields and associated 
standard errors were also obtained for the various crop condition classes. 
The Markov  chain approach is nonparametric,  thereby requiring less 
stringent assumptions; moreover,  it provides information which is not  
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available from standard regression analyses. However, the approach may 
involve some loss of  precision in the forecast, and the potential loss must be 
evaluated separately for each application. The technique was illustrated by 
Matis et  al. (1985) for a data base created from the CERES-Maize computer 
model, which simulates the growth and development of corn plants. 

This paper applies the Markov chain approach to forecasting cotton yield 
from pre-harvest crop data gathered in the U S D A  objective yield survey. 
The present application is different in many ways from the previous 
application, and it demonstrates the generality and practicality of  the basic 
Markov chain methodology. The paper first describes the data set and then 
reviews the Markov chain forecasting approach. The results of  analyzing 
cotton data from the objective yield survey using the new methodology are 
then presented and discussed. 

THE DATA BASE A N D  OBJECTIVES 

The U S D A  gathers yield data on cotton, as well as a number of other crops, 
in order to predict the yield and also to later estimate the cotton production 

TABLE 1 
List of Variables Available from the Objective Yield Survey 

List Symbol 

For 1'83 m Units 
1. Current number  of squares 
2. Current  number  of small bolls and blooms 

For 12.2m Units 
1. Current  number  of large unopened bolls 
2. Current number  of partially opened bolls 
3. Cumulative number  of burrs and bolls 

(accumulated over all visits to date) 
4. Cumulative number  of burrs and bolls on ground 

(accumulated over all visits to date) 
5. Cumulative number  of  bolls in sample 

(BOLLUN + BOLLPT + BOLLOP + BOLLGR) 
6. Cumulative weight of harvested bolls 

(all opened bolls and bolls on the ground are harvested at each visit) 
7. Cumulative average weight per boll 
8. Number  of plants 
9, Row spacing 

10. Yield per hectare 
(constant × CUMWT/ROWSP) 

TOTSQ 
TO TB M 

BOLL UN 
BOLLPT 
BOLLOP 

BOLLGR 

TOTBL 

CU M W T  

WTBOLL 
PLT 
RO WSP 
Y 
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at harvest. This paper analyzes separately cot ton objective yield data  from 
two key producing states, California and Texas, over the four year period 
1981-1984. Details o f  the U S D A  sampling procedures and of  the 
biometrical variables measured in the cot ton survey are given in a U S D A  
publication (USDA, 1987). In brief, a separate random sample of  fields was 
selected in each state for each of  the four years. R a n d o m  sampling units were 
then located within each selected field. For  present convenience, these will be 
aggregated into one large 12-2m (40 ft) unit consisting of  3.05 m sections 
from four different rows in the field and one small 1.83 m unit consisting of  
two 0.915 m sections, each of  which is adjacent to a 3.05 m section. Data  were 
gathered from these two aggregated units for each selected field on five 
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Fig. 1. Histograms of 1984 cotton yields for sampled units in California and Texas. 
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consecutive months, on dates immediately preceding the first day of August 
through December. 

Table 1 lists the independent variables which were recorded to describe 
the condition of the cotton plants on each of the five sampling dates. The 
dependent variable, denoted Y, was the estimated cumulative yield (kg/ha) 
based on the USDA harvested bolls from the sample unit. The objective of 
this application was to forecast the estimated average yield of the two states 
in 1984 from the independent variables available at intermediate times 
during the 1984 growing season. The forecasting model was developed from 
a three year (1981-1983) historical data base. 

The forecasts were then compared with the final estimates for each state. 
The distribution of the observed 1984 yields is given in Fig. 1 for each of the 
two states. There were n 1 = 196 fields surveyed in California and 1/2 ~ 232 in 
Texas. The yield estimates, which are to be forecasted, were the means of the 
observed distributions. These 1984 means were Y1--1036kg/ha for 
California and Y2 = 403 kg/ha for Texas. 

MARKOV CHAIN P R O C E D U R E  

Simple probability model illustration 

The basic theory of the Markov chain procedure was described by Matis et 
al. (1985). The following illustration using a simple probability model may be 
helpful in clarifying the procedure to establish a framework for the present 
application. First consider using two of the variables in Table 1; namely, the 
number of squares (TOTSQ) and the number of bolls (TOTBL), to describe 
the condition of a sample unit of cotton plants on 1 August. Discrete plant 
condition classes may then be defined from these variables. For example, 
suppose that historically the median values of TOTSQ and TOTBL on 1 
August for cotton plants are 1120 and 83, hence one might define four plant 
condition classes using the following combinations: (1) TOTSQ < 1120 and 
TOTBL < 83, (2) TOTSQ < 1120 and TOTBL > 83, (3) TOTSQ _> 1120 and 
TOTBL < 83, and (4) TOTSQ >_ 1120 and TOTBL > 83. Let us also suppose 
that for each condition class on 1 August, a probability distribution of  
cumulative yield at harvest is available. Table 2 lists four such hypothetical 
distributions. The means of the probability distributions may be used as 
point predictors of final yield. For example, the predicted yield of cotton in 
class 1 on 1 August is the weighted average of the class midpoints, i.e. 
(0-48 x 550) + (0-28 × 950) + (0"17 x 1200) + (0"07 × 1550) --- 842. The pre- 
dicted yields of the other classes are 1028, 1106 and 1263, respectively. 
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TABLE 2 
Hypothetical Probability Distributions of Yield for Various Plant Condition Classes in 

August 

Plant condition classes in August Yield category (kg/ha) 

300 800 800-1 100 1 100-1300 1300-1800 

Mean 
yield 

(kg/ha) 

1. TOTSQ< 1120 TOTBL<83  0.48 0-28 0.17 0-07 842 

2. TOTBL > 83 0.26 0.29 0.25 0.20 1 028 
3. TOTSQ >_ 1120 TOTBL < 83 0.19 0.26 0-28 0.27 1 106 

4. TOTBL > 83 0.08 0.17 0.30 0-45 l 263 

This simple example illustrates the basic structure of the Markov chain 
approach. In practical applications, the probability distributions are 
estimated from historical data using Markov chain methodology. Some 
preliminary questions of interest are (1) which variables should be used to 
define the plant condition classes and (2) how should optimal classes be 
constructed from these variables. Each of these questions is addressed below 
with application to the USDA cotton data. In addition to the point estimate, 
interval estimates, and the size of the forecast error are also relevant and will 
be addressed. 

Selection of variables 

The methodology starts with the selection within each given time period of 
the key independent variables which will be used to define plant condition 
classes. For some applications, the physiological growth stages serve as a 
natural series of time periods. However, for the present application, and 
most other large scale applications, the data are collected on fixed, 
chronological dates, for example monthly, and the sampling intervals give 
the time periods. In the present application, data are collected on a few days 
immediately preceding the first of each month from August to December. 
For convenience, we will follow the USDA convention of denoting such 
periods as 'August' through 'December'. 

Two regression models were used to assist in selecting the key variables 
within each period for the baseline (1981-1983) data. One is the multiple 
linear regression model, the other is the multiple rank regression model in 
which the independent and dependent variables are transformed into ranks 
and then analyzed using general linear model theory. The rank regression 
procedure is nonparametric and focuses on monotonic, as opposed to linear, 
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TABLE 3 
Best Subsets of Two Variables (with R 2 Values) for Regression Models by Month and State 

Month State Variables in ordinary R 2 Variables in rank R 2 
regression model regression model 

August CA TOTSQ, TOTBL 0.34 TOTSQ, TOTBM 0.32 
TX TOTSQ, BOLLUN 0.35 TOTSQ, TOTBL 0.31 

September CA TOTBL, TOTBM 0'59 TOTBL, TOTBM 0.60 
TX BOLLUN, TOTSQ 0 - 6 2  BOLLUN, TOTSQ 0.64 

October CA CUMWT, BOLLUN 0 - 7 7  TOTBL, WTBOLL 0.81 
TX CUMWT, BOLLUN 0 - 7 6  TOTBL, WTBOLL 0'83 

association between variables (Conover, 1980). Best subset regression 
procedures (SAS, 1982, PROC RSQUARE) were utilized for both models. 
The results are given in Table 3 which lists the best subset of two 
independent variables for predicting yield, Y, for each state/month 
combination and for each regression model. In each of these models, a third 
independent variable was statistically significant, but the increase in R E was 
negligible and of no practical interest. However, the subsequent metho- 
dology could easily be generalized to include a third key variable, if desired. 

Some subjective judgement was used for the final selection of the key 
variables from the results in Table 3. TOTSQ and TOTBL were chosen for 

3000 -  

200O 

• -. - i i -  
. . . .  ; • • #I~... 

I • ?.="= ,_ 
• ms u e P l l ~ P a m ~ n m i l U  • • 
• • • ~ h • O n ~ m ~  I L l  • 

• - 

• = . . .  , . , . . , . = . ~ - . . : . . .  - • 

.41,='.. %'R~.  w ~ ' i  .',,- ~ .  ,',', 
| | i  i | l l  n • 

• , ? "  • • " 1 2 3 
o I I 

0 1000 2000 3000 4000 

TOTSQ (Aug) 

Fig. 2. Scattcrplot ofyicld, Y, vcrses total squarc count, TOTSQ, in August for 19SI-1983 
basclinc data in California. (A point rcprcscnts one or more obscrvations and QI Q3 dcnote 

thc quartilcs). 



Forecasting cotton yield from surveys 363 

August for both states since these two variables always had either the highest 
or next to highest R z. The highest R 2 for a single variable was 0-24 and for a 
set of  three variables was 0.36, which indicates that two variables are 
necessary and sufficient for practical purposes in each state. TOTSQ and 
TO TBL were also chosen to define plant condition classes in September. 
Although this combination was not the best in any of  the four analyses, it 
was the second best in each analysis and had the highest overall mean R 2. 
Moreover, this combination is somewhat robust against early or late 
growing seasons, TOTSQ being an early plant characteristic and TOTBL a 
late one. TO TBL and WTBOLL were chosen as the optimal set of  variables 
in October for both states on the basis of the preferred, nonparametric 
regression results. 

It should be pointed out that these key variables were selected from the 
pooled 1981-1983 data. Figure 2 is a scatter plot of  pooled data in California 
for Yvs. TOTSQ measured in August. It could be shown that the data also 
contain a year effect which is small but significant in each regression in each 
of  the three months. This year effect is ignored for the present forecasting, 
but its effect will be discussed subsequently. 

Definition of plant condition classes 

The next step in the methodology consists of  defining plant condition classes 
from the key variables. In the simple probability model illustration, each 
variable was divided in half thereby creating four condition classes. For  the 
present application, the following finer partitioning was implemented for the 
baseline data. For August, the variable TOTSQ for the California data was 
divided into quarters using the quartiles Q1 =743,  Q2=1120,  and 
Q3 = 1498, and TOTSQ was divided into halves using the median M = 83-5; 
thus there are eight combinations defining plant condition classes. The 
quartiles for TOTSQ are indicated on Fig. 2. For September, the variable 
TOTBL was divided into four parts using the quartiles Q1 = 408, Q2 = 573, 
and Q3 = 573, and TOTSQ was divided using the median M = 240, which 
again gives eight classes. For October, the principal variable, TOTBL, was 
divided into eights due to the higher R 2. The percentiles used for the division 
were P12.s = 468, P25 = 571, P37.5 = 655, Pso = 714, P62.5 = 781, P75 = 850 
and Ps v. s = 915. The other variable, WTBOLL, was divided into four classes 
based on the quartiles Q1 = 5.80, Q2 = 6.37, and Q3 = 7-03, hence for 
October there are a total of 32 plant condition classes. All of the above 
specific numbers apply to the California data, and similar classes are defined 
for the Texas cotton fields. The dependent variable Ywas partitioned into 40 
discrete classes based on observed quantiles. These classes for the dependent 
variable are not of  equal width, but rather of equal estimated probability. 
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Transition matrices 

Four transition matrices were calculated from the baseline data for each of  
the states, California and Texas. The first matrix `4Ol, is 1 x 8 and gives the 
observed proportions of the 8 condition states defined for August. The 
second, `412, is an 8 x 8 matrix. Each row of this matrix sums to 1.0 and 
contains the observed conditional probabilities that a field in a specified 
class in August will be in each of the 8 condition classes in September. 
Similarly,  .423 and Aa4, the transition matrices from September to October 
and from October to final harvest, were 8 x 32 and 32 x 40, respectively, and 
were estimated separately from the 1981-1983 data for California and for 
Texas. 

Predicted yield distributions and yield forecasts for individual fields 

The predicted yield distributions may be calculated by multiplying 
consecutive transition matrices, as proven by Matis et  al. (1985). The product  
Aol"A12"A23"`434 gives a 1 × 40 matrix which is identical to the observed 
aggregate yield distribution for the 1981-1983 data. The product  
A12"/~23"`434 , an 8 × 40 matrix, gives eight predicted yield distributions, 
one for each of the eight condition states in August. These eight distributions 
are analogs of the four hypothetical distributions given in the body of Table 
2. Clearly, `423"`434 and `434 give the predicted yield distributions for 
September and October, respectively. 

The means of these predicted yield distributions may be used as yield 
forecasts, as illustrated in the example. The means for the previously defined 
plant condition classes in August, September and October are given in Table 
4. The predicted yield distributions contain a wealth of information besides 
the mean which may be of interest in many applications. For  example, other 
point predictors, such as the median, are easily obtained. Also, forecast 
intervals, such as 95% prediction intervals, for individual fields may be of 
great interest in certain applications. Such prediction intervals, which are 
not constrained by the methodology to be symmetric, are illustrated by 
Matis et  al. (1985) but are not of interest in the present application. 

RESULTS 

Forecasted yield for 1984 

Statewide forecasts for 1984 were obtained as follows. A yield forecast was 
obtained each month  for each of the n 1 = 196 sample units in California and 
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TABLE 4 
Means (in kg/ha) of Predicted Yield Distributions for Plant Condition Classes by Month 

August September 

Class Mean Class Mean 

TOTBL<M TOTSQ<Q1 787 TOTSQ<M TOTBL<Q1 685 
Q1 < TOTSQ < Q2 915 Q1 < TOTBL < Q2 926 
Q2 < TOTSQ < Q3 988 Q2 < TOTBL < Q3 1 135 
Q3 < TOTSQ 1 139 Q3 < TOTBL 1 359 

TOTBL>M TOTSQ<Qt 1109 TOTSQ>M TOTBL<Qa 803 
Qx < TOTSQ < Q2 1201 QI < TOTBL < Q2 1085 
Q2 < TOTSQ < Q3 1275 Q2 < TOTBL < Q3 1322 
Q3 < TOTSQ 1 342 Q3 < TOTBL 1 436 

October 

Class Mean 

WTBOLL<Q 1 Qx<WTBOLL<Q2 Q2<WTBOLL<Q3 Q3<WTBOLL 
TO TBL < P12.5 n,37 653 560 693 

P12-5 < TO TBL < P25 740 816 866 969 
P25 < TOTBL<P37.5 904 990 993 981 
P37-5 < TO TBL < P50 948 1 042 963 1 158 
P50 < TOTBL<P62.5 1 066 1 081 1 251 1 376 
P62-5 < TOTBL<P75 1 102 1 224 1 308 1 373 
P75 < TOTBL<P87.5 1 301 1 295 1 504 1 332 
P87.5< TOTBL 1 371 1 544 1 562 1 671 

n z = 232 sampled units in Texas by first classifying the individual units into 
condition classes as defined in the Markov Chain Procedure section and 
then determining a crop forecast from Table 4. Error-free forecasting would 
have reproduced the distributions in Fig. 1. The distribution of  forecast 
errors, i.e. a c t u a l -  forecast, for the individual units in August is given in 
Fig. 3. In California, the maximum overprediction for the units was 784 kg/ha, 
and the maximum underprediction was 748 kg/ha. The mean error was 75.3, 
which corresponds to a statewide forecast of 1111 kg/ha. Since the observed 
statewide yield was 1036, the simulated forecast error in August for 
California was 7.2%. The other monthly forecasts and percent errors for 
California were 1118 (7"9%) in September and 1021 (1.4%) in October. The 
corresponding forecast results for Texas, with an actual yield of 403 kg/ha, 
were 385 kg/ha (4.5% error) in August, 398 (1.2%) in September, and 435 
(7.9%) in October. 

Overall, the results are good by historical standards. The large percentage 
error in the October forecast in Texas is an outlier which probably indicates 
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Histograms of  August forecast errors (actual - forecast) o f  1984 cot ton yields for 
sampled units in California and Texas. 

some weather, insect, or other environmental anomaly affecting yield 
between October and final harvest. 

Investigation of forecast error 

In order to further study the forecast error, simulated forecasts were also 
obtained for 1981, 1982, and 1983. The procedure was repeated for each of 
these years using the remaining three as baseline data. The actual mean 
yields for California for the three years were 1150, 1136, and 1020 kg/ha and 
for Texas were 465, 328, and 352 kg/ha. The key variables were not changed 
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TABLE 5 
Percentage Forecast Errors for Four Separate Years (1981-1984) for each Month/State 

Combination 

California Texas 

1981 1982 1983 1984 Mean 1981 1982 1983 1984 Mean 
(% Forecast error) (%Forecast error) 

August 3.5 5-8 1.3 7.2 4.5 5.2 0.6 8.1 4.5 4.6 
September 3-0 2"1 5"9 7-9 4.7 4.2 0"4 4.4 1-2 2.6 
October 1-9 0'2 3"0 1.4 1.6 6"3 3-0 4.4 7.9 5.4 

Mean 2.8 2.7 3.4 5.5 3.6 5"2 1'3 5"6 4.6 4'2 

(Actual yield) 
(1 150) (1 136) (1020) (1036) (1085) (465) (328) (352) (403) (388) 

Fig.  4. 
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Fig. 5. 
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over the years, but new plant condition classes were defined for each year 
using the procedures outlined previously• The results of this study are given 
in Table 5 and in Figs 4 and 5. The mean per cent error over the four years 
was 4-5% in August, 4-7% in September, and 1.6% in October for 
California, with the comparable figures of 4"6%, 2-6%, and 5-4% for Texas• 
The results are gratifying, particularly in the light of the large yearly 
variation in mean annual Texas cotton yields which range from 328 to 465. 

RECOMMENDATIONS AND FUTURE RESEARCH 

The primary objective of the present study was to investigate the utility of 
the Markov chain approach in predicting crop yields from large operational 
data sets. Such 'real world' data sets are characterized by the small number 
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of time periods at which observations are made, alad by the relatively large 
variation among observations, reflecting the considerable differences among 
the management and environmental conditions of the fields. Current 
forecasting procedures in routine use are based on linear regression 
methodology which requires stringent assumptions, e.g. normality and 
specified linear equations. These assumptions are widely regarded as 
unrealistic; however, very few, if any, proven alternative techniques have 
been available. Indeed, we are not aware of any operational crop forecasting 
procedure based on similar discrete probability modeling, aside from a 
previous report on corn forecasting written by one of us (Birkett, 1987). The 
chief conclusion of this study is that the new method has been successful, as 
judged from the relatively small forecast errors. In general, statewide 
forecasts within 5% are deemed exceptional. 

The objective yield survey gathers information on plant biometrical 
characteristics and field management variables. Other variables, describing 
for example relevant economic, environmental, or remote sensing factors, 
which might be available for other applications would be easy to include in 
the analysis outlined. 

A number of questions remain concerning possible improvement in the 
methodology, and they are under current investigation. One question 
concerns the optimal number of prior years to include in the baseline data 
set. Usually crop forecasts have been projected from only 3 to 5 years of past 
data in order to protect against changing technology and economic 
conditions. However, two characteristics of the present procedure are (1) it is 
nonparametric and (2) it does not assume a priori linear or nonlinear 
regression equations which may be used for extrapolation. Instead, the 
procedure may be classified as an adaptive process of matching observed 
preharvest conditions to historical precedents. Consequently, the procedure 
may give relatively poor forecasts for individual sampling units with extreme 
conditions not previously encountered in the baseline data set. The number 
of sampling units with previously unobserved extreme conditions in a new 
year under consideration is inversely related to the number of years in the 
baseline data set. Therefore, in a static technological and economic 
environment, a larger number of years in the baseline data would tend to 
improve the forecast by substantially reducing the number of outlier 
observations. 

In the present application, the regression models have a significant year 
effect which greatly increases the likely number of extreme observations. 
Nevertheless, the procedure was very successful in forecasting the Texas 
yields despite their substantial between year variability. In particular, the 
procedure gave an acceptable forecast of the 1981 mean yield of 465 kg/ha, 
which exceeded all the other annual means by at least 15%. This success is 
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due in part to the large within year variability of the Texas sampling units, 
however, such predictions tend to become less stable when based on just a 
small number of prior observations. Clearly, it would be very useful to have 
decision rules determining the optimal size of the baseline data set as a 
function of three factors; namely (1) within year variability, (2) between year 
variability and (3) the effect of technological and economic change on the 
nature of the relationship between variables. 

Other questions concern the number of classes which should be used, 
particularly in relation to R 2 or to the number of observations, n, in each 
class. We have found that the predictions are quite robust against the 
number of classes; however, objective criteria could be established to define 
the number of classes for particular applications. 

In summary, we believe that the present methodology has been successful 
in the present application and would be relatively easy to adapt for many 
other similar applications. Therefore the Markov chain approach represents 
a new useful procedure for crop forecasting from operational survey data. 
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